

# **Deep Learning for Computer Vision**

Dr. Konda Reddy Mopuri Mehta Family School of Data Science and Artificial Intelligence IIT Guwahati Aug-Dec 2022

## So far in the class..



Recap of ML, Artificial neuron, MLP

## So far in the class..



- Recap of ML, Artificial neuron, MLP
- CNNs: building blocks and architecture evolution

## So far in the class..



- Recap of ML, Artificial neuron, MLP
- CNNs: building blocks and architecture evolution
- Training DNNs-I: Nonlinearity, weight initialization, regularization

## So far in the class...



- Recap of ML, Artificial neuron, MLP
- CNNs: building blocks and architecture evolution
- Training DNNs-I: Nonlinearity, weight initialization, regularization
- Today: Training DNNs-II (Optimizer: update rules, learning rate, early stopping, post-training, etc.)



## Different update rules for SGD



• DNNs are trained via SGD:  $w_{t+1} = w_t - \eta \cdot \nabla_w J(w)$ 



- DNNs are trained via SGD:  $w_{t+1} = w_t \eta \cdot \nabla_w J(w)$
- Loss is a high dimensional function



- DNNs are trained via SGD:  $w_{t+1} = w_t \eta \cdot \nabla_w J(w)$
- Loss is a high dimensional function
  - May have local minima



- DNNs are trained via SGD:  $w_{t+1} = w_t \eta \cdot \nabla_w J(w)$
- Loss is a high dimensional function
  - May have local minima
  - May have saddle points



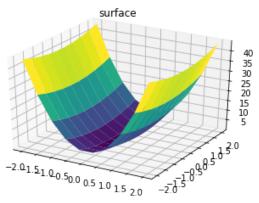
Stuck at a local minimum



Stuck at a saddle point



- DNNs are trained via SGD:  $w_{t+1} = w_t \eta \cdot \nabla_w J(w)$
- Loss is a high dimensional function
  - May vary swiftly in direction and slowly in the other





 SGD leads to jitter along the deep dimension and slow progress along the shallow one



Figure credits: Sebastian Ruder



#### SGD+Momentum

SGD

$$w_{t+1} = w_t - \eta \cdot \nabla_w J(w)$$

$$v_0 = 0$$

$$v_{t+1} = \rho \cdot v_t + \nabla_w J(w)$$

$$w_{t+1} = w_t - \eta \cdot v_{t+1}$$



#### SGD+Momentum

**SGD** 

$$w_{t+1} = w_t - \eta \cdot \nabla_w J(w)$$

$$v_0 = 0$$

$$v_{t+1} = \rho \cdot v_t + \nabla_w J(w)$$

$$w_{t+1} = w_t - \eta \cdot v_{t+1}$$

Aggregates velocity: exponential moving average over gradients



#### SGD+Momentum

SGD

$$w_{t+1} = w_t - \eta \cdot \nabla_w J(w)$$

$$v_0 = 0$$

$$v_{t+1} = \rho \cdot v_t + \nabla_w J(w)$$

$$w_{t+1} = w_t - \eta \cdot v_{t+1}$$

- Aggregates velocity: exponential moving average over gradients
- $\bullet$   $\rho$  is the friction (typically set to 0.9 or 0.99)



#### SGD+Momentum

SGD

$$w_{t+1} = w_t - \eta \cdot \nabla_w J(w)$$

$$v_0 = 0$$

$$v_{t+1} = \rho \cdot v_t + \nabla_w J(w)$$

$$w_{t+1} = w_t - \eta \cdot v_{t+1}$$

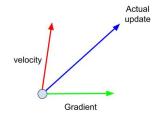
for i in range(num\_iters):  

$$\rightarrow$$
dw = grad( $J, W, x, y$ )  
 $\rightarrow w - = n \cdot dw$ 

$$v_0 = 0$$
  
for i in range(num\_iters):  
 $\rightarrow$ dw = grad( $J, W, x, y$ )  
 $\rightarrow v = \rho \cdot v + dw$   
 $\rightarrow w - = n \cdot v$ 

#### I Sutskever et al., ICML 2013



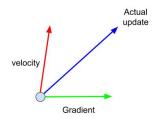


How can momentum help?

Momentum Update

I Sutskever et al., ICML 2013

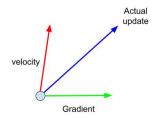




Momentum Update

- How can momentum help?
  - Optimization proceeds even at the local minimum or saddle point (because of the accumulated velocity)

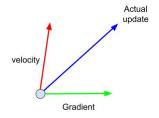




Momentum Update

- 1 How can momentum help?
  - Optimization proceeds even at the local minimum or saddle point (because of the accumulated velocity)
  - Jitter is reduced in ravine like loss surfaces





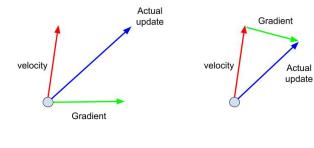
Momentum Update

- How can momentum help?
  - Optimization proceeds even at the local minimum or saddle point (because of the accumulated velocity)
  - Jitter is reduced in ravine like loss surfaces
  - Updates are more smoothed out (less noisy because of the exponential averaging)

## **Nesterov Momentum**



Look ahead with the velocity, then take a step in the gradient's direction



I Sutskever et al., ICML 2013

Momentum Update

Nesterov Momentum

## **Nesterov Momentum**



```
\begin{array}{l} v_0 = 0 \\ \text{for i in range(num\_iters):} \\ \rightarrow \text{dw = grad}(J, W + \rho \cdot v, x, y) \\ \rightarrow v = \rho \cdot v + dw \\ \rightarrow w - = \eta \cdot v \end{array}
```



Adaptive (or, per-parameter) learning rates are introduced

Duchi et al. 2011, JMLR



12

- $f ext{ } f ext{$
- Parameter-wise scaling of the learning rate by the aggregated gradient



grad\_sq = 0  
for i in range(max\_iters):  

$$\rightarrow$$
 dw =  $\rightarrow$ grad(J,w,x,y)  
 $\rightarrow$ grad\_sq += dw  
 $\rightarrow$  w- =  $\eta \cdot dw/(\text{sqrt}(\text{grad sq}) + \epsilon)$ 

 Optimization progress along the steep directions is attenuated



grad\_sq = 0  
for i in range(max\_iters):  

$$\rightarrow$$
 dw =  $\rightarrow$ grad(J,w,x,y)  
 $\rightarrow$ grad\_sq += dw  
 $\rightarrow$  w- =  $\eta \cdot dw/(\text{sqrt}(\text{grad}_sq) + \epsilon)$ 

- Optimization progress along the steep directions is attenuated
- Along the flat directions is accelerated

## **RMS Prop**



- If Ada Grad is run for too long
  - the gradients accumulate to a big value
  - $\, \bullet \, \to \text{update}$  becomes too small (or, learning rate is reduced continuously)

## **RMS Prop**



- If Ada Grad is run for too long
  - the gradients accumulate to a big value
  - ullet update becomes too small (or, learning rate is reduced continuously)
- 2 RMS prop (a leaky version of Ada Grad) addresses this using a friction coefficient ( $\rho$ )

## **RMS Prop**



```
grad_sq = 0

for i in range(max_iters):

\rightarrow dw = \rightarrowgrad(J,w,x,y)

\rightarrowgrad_sq = \rho· grad_sq + (1-\rho)\cdot dw

\rightarrow w-=\eta\cdot dw/(\text{sqrt}(\text{grad\_sq})+\epsilon)
```





- Inculcates both the good things: momentum and the adaptive learning rates
  - $\mathsf{Adam} = \mathsf{RMSProp} + \mathsf{Momentum}$
- m1 = 0m2 = 0

for i in range(max iters):

$$\rightarrow$$
 dw = grad(J,w,x,y)

$$\rightarrow m1 = \beta_1 \cdot m1 + (1 - \beta_1) \cdot dw$$

$$\rightarrow m2 = \beta_2 \cdot m2 + (1 - \beta_2) \cdot dw^2$$

$$\rightarrow m2 = \beta_2 \cdot m2 + (1 - \beta_2) \cdot uw$$

$$\rightarrow w - = \eta \cdot m1/(\operatorname{sqrt}(m2) + \epsilon)$$



$$\begin{aligned} \mathbf{m} 1 &= 0 \\ m2 &= 0 \\ \text{for i in range(max_iters):} \\ &\rightarrow \ \, \text{dw = grad(J,w,x,y)} \\ &\rightarrow \ \, m1 = \beta_1 \cdot m1 + (1 - \beta_1) \cdot dw \\ &\rightarrow \ \, m2 = \beta_2 \cdot m2 + (1 - \beta_2) \cdot dw^2 \\ &\rightarrow \ \, w - = \eta \cdot m1/(\text{sqrt}(m2) + \epsilon) \end{aligned}$$



- ① m1 = 0 m2 = 0for i in range(max\_iters):  $\rightarrow$  dw = grad(J,w,x,y)  $\rightarrow$   $m1 = \beta_1 \cdot m1 + (1 - \beta_1) \cdot dw$   $\rightarrow$   $m2 = \beta_2 \cdot m2 + (1 - \beta_2) \cdot dw^2$  $\rightarrow$   $w - = \eta \cdot m1/(\text{sqrt}(m2) + \epsilon)$
- 2 Bias correction is performed (since the estimates start from 0)



- ① m1 = 0 m2 = 0for i in range(max\_iters):  $\rightarrow$  dw = grad(J,w,x,y)  $\rightarrow$   $m1 = \beta_1 \cdot m1 + (1 - \beta_1) \cdot dw$   $\rightarrow$   $m2 = \beta_2 \cdot m2 + (1 - \beta_2) \cdot dw^2$  $\rightarrow$   $w - = \eta \cdot m1/(\text{sqrt}(m2) + \epsilon)$
- ② Bias correction is performed (since the estimates start from 0)
- 3 Adam works well in practice (mostly with a fixed set of values for the hyper-params)

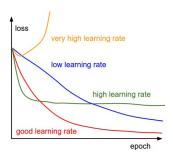


18

## Learning rate scheduling

# Learning rate (Ir)





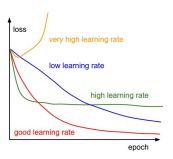
• What lr to use?

Figure credits: CS231n-Standford

## Learning rate (Ir)



19

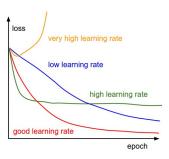


- What lr to use?
- Different lr at different stages of the training!

Figure credits: CS231n-Standford

## Learning rate (Ir)

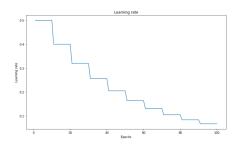




- What lr to use?
- ullet Different lr at different stages of the training!
- Start with high lr and reduce it with time

Figure credits: CS231n-Standford

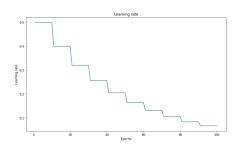




 $\begin{tabular}{ll} \hline \textbf{$\mathbb{Q}$} & \textbf{Reduce the } lr \ \textbf{after} \\ & \textbf{regular intervals} \\ \hline \end{tabular}$ 

Figure credits: Katherine Li

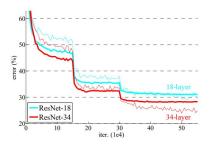




- ① Reduce the lr after regular intervals
- ② E.g. after every 30 epochs,  $\eta*=0.1\cdot\eta$

Figure credits: Katherine Li

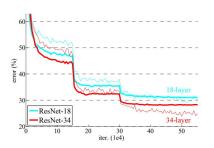




Characteristic loss curve: different phases for ''stage'

Figure credits: Kaiming He et al. 2015, ResNets



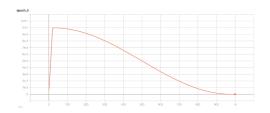


- Characteristic loss curve: different phases for ''stage'
- Issues: annoying hyper-params (when to reduce, by how much, etc.)

Figure credits: Kaiming He et al. 2015, ResNets

# Learning Rate decay: Cosine



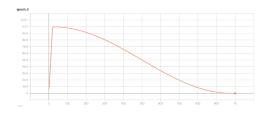


① Reduces the lr continuously  $\eta_t = \frac{1}{2} \eta_0 (1 + cos(t\pi/T))$ 

Figure credits: Sebastian Correa and Medium.com

# Learning Rate decay: Cosine



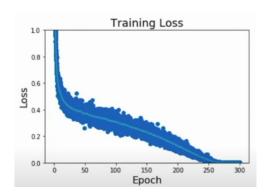


- ① Reduces the lr continuously  $\eta_t = \frac{1}{2}\eta_0(1 + cos(t\pi/T))$
- 2 Less number of hyper-parameters

Figure credits: Sebastian Correa and Medium.com

# Learning Rate decay: Cosine





floor Training longer tends to work, but initial lr is still a tricky one

Figure credits: Dr Justin Johnson, U Michigan

## Learning Rate decay: Linear



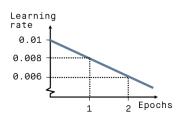


Figure credits: peltarion.com

# Learning Rate decay: Exponential



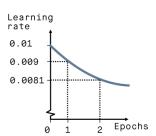


Figure credits: peltarion.com

# Learning Rate decay: Constant lr



① No change in the learning rate  $\eta_t = \eta_0$ 

# Learning Rate decay: Constant lr



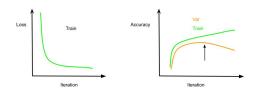
- No change in the learning rate
  - $\eta_t = \eta_0$
- ② Works for prototyping of ideas (other schedules may be better for squeezing in those 1-2% of gains in the performance)



Early stopping - How many epochs to train?

#### **Early stopping**

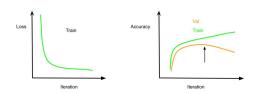




Train as long as the validation performance improves (Stop when it deteriorates)

## **Early stopping**





- Train as long as the validation performance improves (Stop when it deteriorates)
- Practice: train for a long number of epochs, saving the intermediate snapshots regularly, pick the one with the best val performance!



• Observe the initial loss value (if it is as expected or presence of bugs!)



29

- Observe the initial loss value (if it is as expected or presence of bugs!)
- One may try to overfit to a very small subset to ensure the basic things are in place



29

- Observe the initial loss value (if it is as expected or presence of bugs!)
- One may try to overfit to a very small subset to ensure the basic things are in place
- Monitor the learning curves (tell us if poor initialization or over/under/right-fitting)



29

- Observe the initial loss value (if it is as expected or presence of bugs!)
- One may try to overfit to a very small subset to ensure the basic things are in place
- Monitor the learning curves (tell us if poor initialization or over/under/right-fitting)
- Use frameworks' (or fora) help for observing the learning dynamics (e.g. Tensorboard)



#### After the training



 Train multiple models independently and take average inference during testing



- Train multiple models independently and take average inference during testing
- Generally results in slight performance improvements



• The experts can be different snapshots of the same model from training



- The experts can be different snapshots of the same model from training
- ullet E.g. trained with a periodic lr scheduling



Moving average of parameters for testing (Polyak Averaging) for i in range(max\_iters):

$$\rightarrow$$
 dw = grad(J,w,x,y)

$$\rightarrow w + = -\eta \cdot dw$$

$$\rightarrow w_{ exttt{test}} = 0.95 \cdot w_{ exttt{test}} + 0.05 \cdot w$$



## Transfer Learning

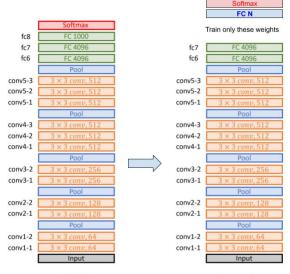


Sometimes, we may get away with lesser training data!



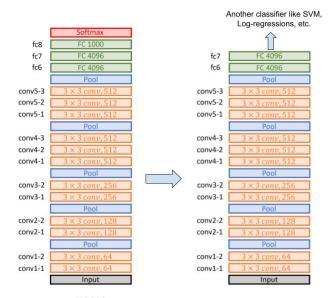
- Sometimes, we may get away with lesser training data!
- Take a DNN trained on a huge training data (task), use it as a feature extractor!!





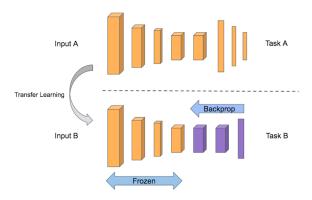
VGG16 Custom CNN





# Transfer learning: Pretrained features and Finetuning





Some tips: may have to use smaller learning rate for the transferred layers, start with feature extraction then do finetuning, lower layers might be frozen, etc.

Figure credits: Giang Tran and Medium.com



## **Appendix**

#### **Convex function**



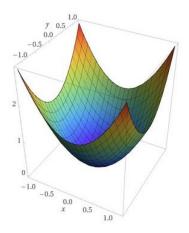


Figure credits: Paperspace blog

#### Level sets and ravine



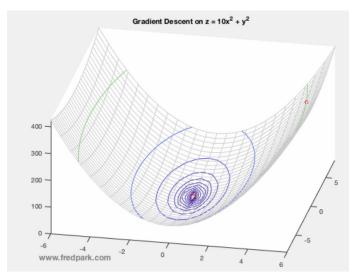


Figure credits: fredpark.com